Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme
نویسندگان
چکیده
Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.
منابع مشابه
Computer Aided Detection for Pneumoconiosis Screening on Digital Chest Radiographs
This paper presents a computer aided detection scheme on digital chest radiographs for pneumoconiosis screening. The scheme involves several medical image processing and analysis technologies, i.e. lung segmentation algorithm using the active shape model, image enhancement and features extraction from lung regions, feature down-selection by correlation analysis and clustering method, classifica...
متن کاملFalse-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.
RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, ...
متن کاملVisual Pattern Image Coding by a Morphological Approach (RESEARCH NOTE)
This paper presents an improvement of the Visual Pattern image coding (VPIC) scheme presented by Chen and Bovik in [2] and [3]. The patterns in this improved scheme are defined by morphological operations and classified by absolute error minimization. The improved scheme identifies more uniform blocks and reduces the noise effect. Therefore, it improves the compression ratio and image quality i...
متن کاملSegmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database
The task of segmenting the lung fields, the heart, and the clavicles in standard posterior-anterior chest radiographs is considered. Three supervised segmentation methods are compared: active shape models, active appearance models and a multi-resolution pixel classification method that employs a multi-scale filter bank of Gaussian derivatives and a k-nearest-neighbors classifier. The methods ha...
متن کاملDevelopment of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods
We have been developing a computer-aided detection (CAD) scheme for pneumoconiosis based on a rule-based plus artificial neural network (ANN) analysis of power spectra. In this study, we have developed three enhancement methods for the abnormal patterns to reduce false-positive and false-negative values. The image database consisted of 2 normal and 15 abnormal chest radiographs. The Internation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015